On simplicity and uniqueness of trace for reduced twisted group C^* -algebras joint work with Erik Bédos, University of Oslo

Tron Omland

Arizona State University

West Coast Operator Algebra Seminar November 1, 2014 University of Denver G will always denote a discrete group.

The reduced group C^* -algebra $C^*_r(G)$ is simple with a unique trace in many cases, for example when G is a Powers group, including e.g. free nonabelian groups \mathbb{F}_n , (nontrivial) free products G * H, and others.

Recently it was shown (by Breuillard, Kalantar, Kennedy, and Ozawa) that $C_r^*(G)$ has a unique trace if and only if the amenable radical of G is trivial. In particular, this means that simplicity of $C_r^*(G)$ is stronger than uniqueness of trace.

What is different in the twisted case vs. the ordinary case?

Many interesting examples of simple twisted group C^* -algebras with unique trace come from amenable groups.

 $C_r^*(G)$ is nuclear $\iff G$ is amenable $\iff C^*(G) \cong C_r^*(G)$. The trivial representation $G \to \mathbb{C}$, $g \mapsto 1$ for all $g \in G$ gives an ideal of codimension 1 of the full group C^* -algebra $C^*(G)$. So if $C_r^*(G)$ is simple and nuclear, then $G = \{e\}$.

A reduced twisted group C^* -algebra can be both nuclear and simple, e.g. the irrational rotation algebras are isomorphic to $C^*_r(\mathbb{Z}^2, \sigma)$.

In general, $C_r^*(G, \sigma)$ is nuclear $\iff G$ is amenable.

Question

1. $C_r^*(G)$ is simple $\implies C_r^*(G, \sigma)$ is simple for all σ ?

2. $C_r^*(G)$ has unique trace $\implies C_r^*(G, \sigma)$ has unique trace for all σ ?

(both 1. and 2. hold for weak Powers groups)

A (normalized circle-valued) two-cocycle on G is a function $\sigma: G \times G \to \mathbb{T}$ such that

$$\sigma(g, h)\sigma(gh, k) = \sigma(h, k)\sigma(g, hk)$$

 $\sigma(g, e) = \sigma(e, g) = 1$

for all $g, h, k \in G$. Such functions are sometimes called *multipliers on* G.

Definition

A σ -projective unitary representation of G on a Hilbert space \mathcal{H} is a map $U: G \to U(\mathcal{H})$ such that

$$U(g)U(h) = \sigma(g,h)U(gh)$$

for all $g, h \in G$.

The twisted ℓ^1 -algebra

Define the Banach *-algebra $\ell^1(G,\sigma)$ as the set $\ell^1(G)$ with twisted convolution and involution

$$(f_1 * f_2)(g) = \sum_{h \in G} f_1(h)\sigma(h, h^{-1}g)f_2(h^{-1}g)$$

 $f^*(g) = \overline{\sigma(g, g^{-1})f(g^{-1})}$

together with the usual $\|\cdot\|_1$ -norm. Define the left regular σ -projective unitary representation $\lambda = \lambda_{\sigma}$ of G on $B(\ell^2(G))$ by

$$(\lambda(g)\xi)(h) = \sigma(g, g^{-1}h)\xi(g^{-1}h)$$

and its integrated form on $\ell^1(G,\sigma)$ by

$$\lambda(f) = \sum_{g \in G} f(g)\lambda(g).$$

- $C_r^*(G, \sigma)$ is the C*-algebra generated by $\lambda(\ell^1(G, \sigma))$.
- W^{*}(G, σ) is the von Neumann algebra generated by λ(ℓ¹(G, σ)).
- C^{*}(G, σ) is the enveloping C^{*}-algebra of ℓ¹(G, σ).

Representations of $C^*(G, \sigma)$ are in 1-1-correspondence with σ -projective unitary representations of G.

If G is amenable, then λ is faithful, so $C_r^*(G,\sigma) \cong C^*(G,\sigma)$.

Question

1. $C^*(G, \sigma) \cong C^*_r(G, \sigma) \Longrightarrow G$ amenable? (holds if σ is trivial) 2. $C^*(G, \sigma)$ is simple $\Longrightarrow G$ amenable?

Let τ be the vector state on $C_r^*(G, \sigma)$ given by $\tau(x) = \langle x \delta_e, \delta_e \rangle$. Then τ is a faithful trace on $C_r^*(G, \sigma)$ and $\tau(\lambda(g)) = 0$ if $g \neq e$.

Question (open in both directions; when σ is trivial \implies holds)

 $C_r^*(G,\sigma)$ simple $\iff C_r^*(G,\sigma)$ has unique trace?

Kleppner's condition

- $g \in G$ is called σ -regular if $\sigma(g, h) = \sigma(h, g)$ whenever gh = hg.
- If g is σ -regular then hgh^{-1} is also σ -regular for all h.

Theorem (Kleppner, Murphy, O)

The following are equivalent:

- (i) Every nontrivial σ -regular conjugacy class in G is infinite.
- (ii) $W^*(G, \sigma)$ is a factor.
- (iii) $C_r^*(G, \sigma)$ is prime (i.e. nonzero ideals have nonzero intersection).
- (iv) $C_r^*(G, \sigma)$ has trivial center.

Definition

We say that (G, σ) satisfies *Kleppner's condition* if (i) holds.

Remark

Kleppner's condition is necessary for both simplicity and unique trace of $C_r^*(G, \sigma)$, but is in general far from being sufficient for any of them.

Example 1 (icc)

If G is icc (i.e. its nontrival conjugacy classes are infinite), then (G, σ) satisfies Kleppner's condition for all σ . E.g. $C_r^*(\mathbb{F}_n)$ is simple for all $n \ge 2$, but $C_r^*(G)$ is nonsimple when G is amenable and icc.

Example 2 (abelian)

If G is abelian, then (G, σ) satisfies Kleppner's condition if there are no nontrivial σ -regular points, i.e. for all $g \neq e$ there exists h such that $\sigma(g, h) \neq \sigma(h, g)$. E.g. $C_r^*(\mathbb{Z}_n \times \mathbb{Z}_n, \sigma) \cong M_n(\mathbb{C}) \iff (\mathbb{Z}_n \times \mathbb{Z}_n, \sigma)$ satisfies Kleppner's cond. The noncommutative *n*-tori are isomorphic to $C_r^*(\mathbb{Z}^n, \sigma_\theta)$, where the two-cocycles are parametrized by $\theta \in \mathbb{T}^{n(n-1)/2}$.

Example 3 (nonamenable, non-icc)

 $G = \mathbb{F}_2 \times \mathbb{Z}$, then $H^2(G, \mathbb{T}) \cong \mathbb{T}^2$. Then $(G, \sigma_{\mu,\nu})$ satisfies Kleppner's condition \iff at least one of μ and ν is nontorsion.

9/20

Summary of what is previously known

- For a large class of nonamenable icc groups, $C_r^*(G)$ is simple with a unique trace.
- If G is finite or abelian or more generally nilpotent [Packer '89], and σ is a cocycle of G, then the following are equivalent:
- (i) (G, σ) satisfies Kleppner's condition
- (ii) $C_r^*(G, \sigma)$ is simple
- (iii) $C_r^*(G, \sigma)$ has unique trace

First Goal

Let \mathcal{K} the class of groups such that for any σ , the conditions (i)-(iii) are equivalent. Describe the subclass \mathcal{K}^{am} of all amenable groups in \mathcal{K} .

 \mathcal{K}^{am} does not contain any amenable icc group (except $\{e\}$). \mathcal{K}^{am} does not contain *all* amenable groups that admit a reduced twisted group C^* -algebra which is simple with unique trace. The *FC*-center of G is given by

 $FC(G) = \{g \in G \mid \text{the conjugacy class of } g \text{ is finite}\}.$

The FC-center of G is a normal subgroup of G.

The upper FC-central series $\{F_{\alpha}\}_{\alpha}$ of G is a normal series of subgroups of G indexed by the ordinal numbers. It is defined as follows:

We set $F_0 = \{e\}$, $F_{\alpha}/F_{\beta} = FC(G/F_{\beta})$ if $\alpha = \beta + 1$, and $F_{\alpha} = \bigcup_{\beta < \alpha} F_{\beta}$ when α is a limit ordinal. This series eventually stabilizes and

$$FCH(G) = \lim_{\alpha} F_{\alpha} = \bigcup_{\alpha} F_{\alpha}$$

is called the *FC-hypercenter of G*, and is a normal subgroup of *G*. If G = FCH(G) then *G* is called *FC-hypercentral*. *FCH*(*G*) is trivial if and only if *FC*(*G*) is trivial if and only if *G* is icc.

Proposition

The quotient group G/FCH(G) is icc. Moreover, if N is a normal subgroup of G such that G/N is icc, then $FCH(G) \subset N$.

The FC-hypercenter of a group G is the smallest normal subgroup of G that produces an icc quotient group.

We define ICC(G) = G/FCH(G).

The class of FC-hypercentral groups is closed under subgroups, direct products, and FC-hypercentral extensions. Moreover:

virtually nilpotent \implies FC-hypercentral \implies polynomial growth

If we restrict to finitely generated groups, these classes coincide by Gromov's theorem.

Theorem (B-O)

Every FC-hypercentral group G belongs to \mathcal{K}^{am} , that is, for any two-cocycle σ of G, the following are equivalent:

- (i) (G, σ) satisfies Kleppner's condition
- (ii) $C_r^*(G, \sigma)$ is simple
- (iii) $C_r^*(G, \sigma)$ has unique trace

A C*-algebra is said to have the QTS property if each (nontrivial) quotient A/J admits a trace.

Theorem (Murphy '00)

Let A be a unital C^* -algebra having the QTS property. Then A is simple if and only if all its traces are faithful.

Corollary

If $C_r^*(G, \sigma)$ has the QTS property and a unique trace, then $C_r^*(G, \sigma)$ is simple.

 $C^*_r(G,\sigma)$ has QTS property + unique trace $\implies C^*_r(G,\sigma)$ is simple.

Proposition (Murphy, Bédos)

If G is amenable or if G is exact and $C_r^*(G, \sigma)$ has stable rank 1, then $C_r^*(G, \sigma)$ has the QTS property.

Question

Is there any relationship between $C_r^*(G, \sigma)$ being simple and having stable rank 1? In all cases where $C_r^*(G, \sigma)$ is known to be simple and the stable rank of $(C_r^*(G, \sigma))$ has been computed, it is 1.

Theorem (B-O)

Every FC-hypercentral group G belongs to \mathcal{K}^{am} , that is, for any two-cocycle σ of G, the following are equivalent:

- (i) (G, σ) satisfies Kleppner's condition.
- (ii) $C_r^*(G, \sigma)$ is simple.
- (iii) $C_r^*(G, \sigma)$ has unique trace.

Remark that we always have (ii) \implies (i), and since FC-hypercentral groups are amenable, $C_r^*(G, \sigma)$ has the QTS property, so (iii) \implies (ii). Hence, it is suffices to show that (i) \implies (iii).

(The proof of (i) \implies (iii) is inspired by Packer's for nilpotent groups; and uses some techniques by Carey and Moran)

Sketch of proof

Let φ be a trace on $C_r^*(G, \sigma)$. Suppose (G, σ) satisfies Kleppner's condition. For each $h \in FC(G) \setminus \{e\}$, there exists $g \in G$ s.t. hg = gh and $\sigma(h, g) \neq \sigma(g, h)$, and then

$$\begin{aligned} \varphi(\lambda(h)) &= \varphi(\lambda(g)\lambda(h)\lambda(g)^*) = \varphi(\sigma(g,h)\overline{\sigma(ghg^{-1},g)}\lambda(ghg^{-1})) \\ &= \sigma(g,h)\overline{\sigma(h,g)}\varphi(\lambda(h)) = z\varphi(\lambda(h)) \end{aligned}$$

for some $z \neq 1$, and thus $\lambda(h) = 0$. That is, φ agrees with τ on $C^*{\lambda(h) : h \in FC(G)}$. The rest of the (rather technical) proof is to show the following lemma: If φ agrees with τ on $C^*{\lambda(h) : h \in FC(G)}$, then φ agrees with τ on $C^*{\lambda(h) : h \in FCH(G)}$. This is done by (transfinite) induction on the upper FC-central series $\{F_{\alpha}\}_{\alpha}$, i.e.: we show that when α is an ordinal and $\varphi(\lambda(h)) = 0$ for all $h \in F_{\beta} \setminus \{e\}$ and $\beta < \alpha$, then $\varphi(\lambda(h)) = 0$ for all $h \in F_{\alpha} \setminus \{e\}$.

More results

Theorem (B-O)

Assume that K = ICC(G) is a (weak) Powers group. Then we have:

- a) (G, σ) satisfies Kleppner's condition if and only if (G, σ) has the unique trace property.
- b) Set H = FCH(G) and let σ_H denote the restriction of σ to $H \times H$. If (H, σ_H) satisfies Kleppner's condition, then $C_r^*(G, \sigma)$ is simple and has the unique trace property.

For part a): if, in addition, G is exact and $C_r^*(G, \sigma)$ has stable rank one, then $C_r^*(G, \sigma)$ is simple.

Proposition (B-O)

Suppose (G, σ) satisfies Kleppner's conditon. If the action of ICC(G) on G is freely acting on $W^*(G, \sigma)$ (i.e. $\alpha(S)T = TS$ for all $S \Rightarrow T = 0$), then $C_r^*(G, \sigma)$ has a unique trace. If, in addition, G is exact and $C_r^*(G, \sigma)$ has stable rank one, then $C_r^*(G, \sigma)$ is simple.

Example 3 cont.

 $G = \mathbb{F}_2 \times \mathbb{Z}$, then $H^2(G, \mathbb{T}) \cong \mathbb{T}^2$. Then $(G, \sigma_{\mu,\nu})$ satisfies Kleppner's condition \iff at least one of μ and ν is nontorsion. Here $FCH(G) = \mathbb{Z}$ and $ICC(G) = \mathbb{F}_2$ is Powers, so by the theorem: Kleppner's condition $\iff C_r^*(G, \sigma_{\mu,\nu})$ has unique trace. By a different technique, we can show that Kleppner's condition is equivalent to simplicity, so $G \in \mathcal{K}$.

Example 4

Let $n \in \mathbb{N}$, $n \ge 2$ and set $G = \langle a, b \mid ab^n = b^n a \rangle$. Then G is the so-called Baumslag-Solitar group often denoted by BS(n, n). We have

$$FCH(G) = FC(G) = Z(G) = \langle b^n \rangle \simeq \mathbb{Z}$$

and $ICC(G) \simeq \mathbb{Z} * \mathbb{Z}_n$ is Powers.

Examples II

Example 4 cont.

Let f denote the surjective homomorphism $f: G \to \mathbb{Z}^2$ satisfying f(a) = (1,0) and f(b) = (0,1). For $\theta \in \mathbb{R}$, let $\omega_{\theta} \in Z^2(\mathbb{Z}^2, \mathbb{T})$ be given by

$$\omega_{\theta}(m,n)=e^{2\pi i\theta m_2 n_1},$$

and define $\sigma_{ heta} \in Z^2(G,\mathbb{T})$ by

$$\sigma_{\theta}(x, y) = \omega_{\theta}(f(x), f(y)).$$

It can be shown that every two-cocycle on G is cohomologous to one of this form.

Then one checks that (G, σ_{θ}) satisfies Kleppner's condition if and only if θ is irrational. Hence, by the theorem, $C_r^*(G, \sigma_{\theta})$ has a unique trace if and only if θ is irrational.

Using a different technique one can conclude that $C_r^*(G, \sigma_\theta)$ is simple if and only if θ is irrational, and that G = BS(n, n) belongs to \mathcal{K} .