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Introduction

G will always denote a discrete group.

The reduced group C∗-algebra C∗r (G) is simple with a unique trace in
many cases, for example when G is a Powers group, including e.g. free
nonabelian groups Fn, (nontrivial) free products G ∗ H, and others.

Recently it was shown (by Breuillard, Kalantar, Kennedy, and Ozawa)
that C∗r (G) has a unique trace if and only if the amenable radical of G is
trivial. In particular, this means that simplicity of C∗r (G) is stronger than
uniqueness of trace.

What is different in the twisted case vs. the ordinary case?

Many interesting examples of simple twisted group C∗-algebras with
unique trace come from amenable groups.
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Why twisted group C ∗-algebras?

C∗r (G) is nuclear ⇐⇒ G is amenable ⇐⇒ C∗(G) ∼= C∗r (G).
The trivial representation G → C, g 7→ 1 for all g ∈ G gives an ideal of
codimension 1 of the full group C∗-algebra C∗(G).
So if C∗r (G) is simple and nuclear, then G = {e}.

A reduced twisted group C∗-algebra can be both nuclear and simple,
e.g. the irrational rotation algebras are isomorphic to C∗r (Z2, σ).

In general, C∗r (G , σ) is nuclear ⇐⇒ G is amenable.

Question
1. C∗r (G) is simple =⇒ C∗r (G , σ) is simple for all σ?
2. C∗r (G) has unique trace =⇒ C∗r (G , σ) has unique trace for all σ?

(both 1. and 2. hold for weak Powers groups)
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Two-cocycles

Definition
A (normalized circle-valued) two-cocycle on G is a function
σ : G × G → T such that

σ(g , h)σ(gh, k) = σ(h, k)σ(g , hk)
σ(g , e) = σ(e, g) = 1

for all g , h, k ∈ G . Such functions are sometimes called multipliers on G .

Definition
A σ-projective unitary representation of G on a Hilbert space H is a map
U : G → U(H) such that

U(g)U(h) = σ(g , h)U(gh)

for all g , h ∈ G .
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The twisted `1-algebra

Define the Banach ∗-algebra `1(G , σ) as the set `1(G) with twisted
convolution and involution

(f1 ∗ f2)(g) =
∑
h∈G

f1(h)σ(h, h−1g)f2(h−1g)

f ∗(g) = σ(g , g−1)f (g−1)

together with the usual ‖·‖1-norm. Define the left regular σ-projective
unitary representation λ = λσ of G on B(`2(G)) by

(λ(g)ξ)(h) = σ(g , g−1h)ξ(g−1h)

and its integrated form on `1(G , σ) by

λ(f ) =
∑
g∈G

f (g)λ(g).
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Twisted group C ∗-algebras

Definition
• C∗r (G , σ) is the C∗-algebra generated by λ(`1(G , σ)).
• W ∗(G , σ) is the von Neumann algebra generated by λ(`1(G , σ)).
• C∗(G , σ) is the enveloping C∗-algebra of `1(G , σ).

Representations of C∗(G , σ) are in 1-1-correspondence with σ-projective
unitary representations of G .

If G is amenable, then λ is faithful, so C∗r (G , σ) ∼= C∗(G , σ).

Question
1. C∗(G , σ) ∼= C∗r (G , σ) =⇒ G amenable? (holds if σ is trivial)
2. C∗(G , σ) is simple =⇒ G amenable?

Tron Omland, ASU Simplicity and unique trace for C∗
r (G, σ) 6/20



Canonical trace on C ∗r (G , σ)

Definition
Let τ be the vector state on C∗r (G , σ) given by τ(x) = 〈xδe , δe〉.
Then τ is a faithful trace on C∗r (G , σ) and τ(λ(g)) = 0 if g 6= e.

Question (open in both directions; when σ is trivial =⇒ holds)
C∗r (G , σ) simple ⇐⇒ C∗r (G , σ) has unique trace?
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Kleppner’s condition

• g ∈ G is called σ-regular if σ(g , h) = σ(h, g) whenever gh = hg .
• If g is σ-regular then hgh−1 is also σ-regular for all h.

Theorem (Kleppner, Murphy, O)
The following are equivalent:
(i) Every nontrivial σ-regular conjugacy class in G is infinite.
(ii) W ∗(G , σ) is a factor.
(iii) C∗r (G , σ) is prime (i.e. nonzero ideals have nonzero intersection).
(iv) C∗r (G , σ) has trivial center.

Definition
We say that (G , σ) satisfies Kleppner’s condition if (i) holds.

Remark
Kleppner’s condition is necessary for both simplicity and unique trace of
C∗r (G , σ), but is in general far from being sufficient for any of them.
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Examples

Example 1 (icc)
If G is icc (i.e. its nontrival conjugacy classes are infinite), then (G , σ)
satisfies Kleppner’s condition for all σ. E.g. C∗r (Fn) is simple for all
n ≥ 2, but C∗r (G) is nonsimple when G is amenable and icc.

Example 2 (abelian)
If G is abelian, then (G , σ) satisfies Kleppner’s condition if there are no
nontrivial σ-regular points,
i.e. for all g 6= e there exists h such that σ(g , h) 6= σ(h, g).
E.g. C∗r (Zn×Zn, σ) ∼= Mn(C)⇐⇒ (Zn×Zn, σ) satisfies Kleppner’s cond.
The noncommutative n-tori are isomorphic to C∗r (Zn, σθ), where the
two-cocycles are parametrized by θ ∈ Tn(n−1)/2.

Example 3 (nonamenable, non-icc)
G = F2 × Z, then H2(G ,T) ∼= T2. Then (G , σµ,ν) satisfies Kleppner’s
condition ⇐⇒ at least one of µ and ν is nontorsion.
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Summary of what is previously known

• For a large class of nonamenable icc groups, C∗r (G) is simple with a
unique trace.

• If G is finite or abelian or more generally nilpotent [Packer ’89], and
σ is a cocycle of G , then the following are equivalent:

(i) (G , σ) satisfies Kleppner’s condition
(ii) C∗r (G , σ) is simple
(iii) C∗r (G , σ) has unique trace

First Goal
Let K the class of groups such that for any σ, the conditions (i)-(iii) are
equivalent. Describe the subclass Kam of all amenable groups in K.

Kam does not contain any amenable icc group (except {e}).
Kam does not contain all amenable groups that admit a reduced twisted
group C∗-algebra which is simple with unique trace.
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FC-hypercentral groups

The FC-center of G is given by

FC(G) = {g ∈ G | the conjugacy class of g is finite} .

The FC-center of G is a normal subgroup of G .
The upper FC-central series {Fα}α of G is a normal series of subgroups
of G indexed by the ordinal numbers. It is defined as follows:
We set F0 = {e}, Fα/Fβ = FC(G/Fβ) if α = β + 1, and Fα =

⋃
β<α Fβ

when α is a limit ordinal. This series eventually stabilizes and

FCH(G) = lim
α

Fα =
⋃
α

Fα

is called the FC-hypercenter of G , and is a normal subgroup of G .
If G = FCH(G) then G is called FC-hypercentral.
FCH(G) is trivial if and only if FC(G) is trivial if and only if G is icc.
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FC-hypercentral groups

Proposition
The quotient group G/FCH(G) is icc. Moreover, if N is a normal
subgroup of G such that G/N is icc, then FCH(G) ⊂ N.

The FC-hypercenter of a group G is the smallest normal subgroup of G
that produces an icc quotient group.
We define ICC(G) = G/FCH(G).
The class of FC-hypercentral groups is closed under subgroups, direct
products, and FC-hypercentral extensions. Moreover:

virtually nilpotent =⇒ FC-hypercentral =⇒ polynomial growth

If we restrict to finitely generated groups, these classes coincide by
Gromov’s theorem.

Tron Omland, ASU Simplicity and unique trace for C∗
r (G, σ) 12/20



Main theorem

Theorem (B-O)
Every FC-hypercentral group G belongs to Kam, that is, for any
two-cocycle σ of G , the following are equivalent:
(i) (G , σ) satisfies Kleppner’s condition
(ii) C∗r (G , σ) is simple
(iii) C∗r (G , σ) has unique trace
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The QTS property

Definition
A C∗-algebra is said to have the QTS property if each (nontrivial)
quotient A/J admits a trace.

Theorem (Murphy ’00)
Let A be a unital C∗-algebra having the QTS property.
Then A is simple if and only if all its traces are faithful.

Corollary
If C∗r (G , σ) has the QTS property and a unique trace, then C∗r (G , σ) is
simple.
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The QTS property

C∗r (G , σ) has QTS property + unique trace =⇒ C∗r (G , σ) is simple.

Proposition (Murphy, Bédos)
If G is amenable or if G is exact and C∗r (G , σ) has stable rank 1, then
C∗r (G , σ) has the QTS property.

Question
Is there any relationship between C∗r (G , σ) being simple and having
stable rank 1? In all cases where C∗r (G , σ) is known to be simple and the
stable rank of (C∗r (G , σ)) has been computed, it is 1.
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Main theorem

Theorem (B-O)
Every FC-hypercentral group G belongs to Kam, that is, for any
two-cocycle σ of G , the following are equivalent:
(i) (G , σ) satisfies Kleppner’s condition.
(ii) C∗r (G , σ) is simple.
(iii) C∗r (G , σ) has unique trace.

Remark that we always have (ii) =⇒ (i), and since FC-hypercentral
groups are amenable, C∗r (G , σ) has the QTS property, so (iii) =⇒ (ii).
Hence, it is suffices to show that (i) =⇒ (iii).

(The proof of (i) =⇒ (iii) is inspired by Packer’s for nilpotent groups;
and uses some techniques by Carey and Moran)
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Sketch of proof

Let ϕ be a trace on C∗r (G , σ).
Suppose (G , σ) satisfies Kleppner’s condition. For each h ∈ FC(G) \ {e},
there exists g ∈ G s.t. hg = gh and σ(h, g) 6= σ(g , h), and then

ϕ(λ(h)) = ϕ(λ(g)λ(h)λ(g)∗) = ϕ(σ(g , h)σ(ghg−1, g)λ(ghg−1))
= σ(g , h)σ(h, g)ϕ(λ(h)) = zϕ(λ(h))

for some z 6= 1, and thus λ(h) = 0.
That is, ϕ agrees with τ on C∗{λ(h) : h ∈ FC(G)}.
The rest of the (rather technical) proof is to show the following lemma:
If ϕ agrees with τ on C∗{λ(h) : h ∈ FC(G)}, then ϕ agrees with τ on
C∗{λ(h) : h ∈ FCH(G)}.
This is done by (transfinite) induction on the upper FC-central series
{Fα}α, i.e.: we show that when α is an ordinal and ϕ(λ(h)) = 0 for all
h ∈ Fβ \ {e} and β < α, then ϕ(λ(h)) = 0 for all h ∈ Fα \ {e}.
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More results

Theorem (B-O)
Assume that K = ICC(G) is a (weak) Powers group. Then we have:
a) (G , σ) satisfies Kleppner’s condition if and only if (G , σ) has the

unique trace property.
b) Set H = FCH(G) and let σH denote the restriction of σ to H × H.

If (H, σH) satisfies Kleppner’s condition, then C∗r (G , σ) is simple and
has the unique trace property.

For part a): if, in addition, G is exact and C∗r (G , σ) has stable rank one,
then C∗r (G , σ) is simple.

Proposition (B-O)
Suppose (G , σ) satisfies Kleppner’s conditon.
If the action of ICC(G) on G is freely acting on W ∗(G , σ) (i.e.
α(S)T = TS for all S ⇒ T = 0), then C∗r (G , σ) has a unique trace.
If, in addition, G is exact and C∗r (G , σ) has stable rank one, then
C∗r (G , σ) is simple.
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Examples I

Example 3 cont.
G = F2 × Z, then H2(G ,T) ∼= T2. Then (G , σµ,ν) satisfies Kleppner’s
condition ⇐⇒ at least one of µ and ν is nontorsion.
Here FCH(G) = Z and ICC(G) = F2 is Powers, so by the theorem:
Kleppner’s condition ⇐⇒ C∗r (G , σµ,ν) has unique trace.
By a different technique, we can show that Kleppner’s condition is
equivalent to simplicity, so G ∈ K.

Example 4
Let n ∈ N, n ≥ 2 and set G = 〈a, b | abn = bna〉. Then G is the so-called
Baumslag-Solitar group often denoted by BS(n, n). We have

FCH(G) = FC(G) = Z (G) = 〈bn〉 ' Z

and ICC(G) ' Z ∗ Zn is Powers.
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Examples II

Example 4 cont.
Let f denote the surjective homomorphism f : G → Z2 satisfying
f (a) = (1, 0) and f (b) = (0, 1). For θ ∈ R, let ωθ ∈ Z 2(Z2,T) be given
by

ωθ(m, n) = e2πiθm2n1 ,

and define σθ ∈ Z 2(G ,T) by

σθ(x , y) = ωθ(f (x), f (y)).

It can be shown that every two-cocycle on G is cohomologous to one of
this form.
Then one checks that (G , σθ) satisfies Kleppner’s condition if and only if
θ is irrational. Hence, by the theorem, C∗r (G , σθ) has a unique trace if
and only if θ is irrational.
Using a different technique one can conclude that C∗r (G , σθ) is simple if
and only if θ is irrational, and that G = BS(n, n) belongs to K.
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